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1 Introduction

The program towards studying gauge/gravity correspondence in the context of

AdS4/CFT3 [1] becomes concrete owing to the pioneering work [2] by Aharony, Bergman,

Jafferis and Maldacena last year. They found that constructing a much higher supersym-

metric conformal field theory (SCFT) of Chern-Simons-matter (CSM) type is possible due

to an elliptic brane setup in Type IIB string theory. Through T-duality and M-theory lift,

one obtains N M2-branes filling (012) transverse to a 8D cone: Cone(B7) (B7 = S7/Zk)

along (345678910). The corresponding gravity dual is thus a solution of 11D supergravity

AdS4 × B7 after N M2-branes backreact.

Later on, generalizing their idea to yield elliptic N ≥ 3 SCFTs is explained in [3, 4] by

attaching various kinds of (1, ki)5-branes on a stack of circular D3-branes. The resulting

field theory at infra-red (IR) fixed point (gYM → ∞) is still of quiver CSM type with
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product gauge group
∏

I U(N)I . Its Lagrangian is so rigid, i.e. CS level kI w.r.t. I-th

gauge factor is determined by two adjacent D5-brane charges kI = ki − ki−1 [5, 6], while

the superpotential is obtained by integrating out non-dynamical massive adjoint ΦI(⊂
vector multiplet) coupled to hypermultiplets in a typical manner.

Among many kinds of elliptic N ≥ 3 SCFTs, we will focus on a specific type of N=4

SCFT which is constructed via IIB N circular D3- (0126), p NS5- (012345) and q (1, k)5-

(012[3, 7]θ [4, 8]θ [5, 9]θ) branes.1 Its 11D gravity dual AdS4 ×M7 parameterized by (k, p, q)

is explicitly known [3, 10] and this is the main reason why we study this kind of SCFT here.

In this note, motivated by works on the flavored ABJM theory [7–9], we construct a new

N=3 SCFT by adding NF massless fundamental flavors and study its gravity dual. From

Type IIB picture, adding flavor corresponds to further attaching NF D5-branes (012789)

on the circle x6 and results in a less supersymmetric N=3 SCFT. This construction is by

definition an elliptic one, so in M-theory to have N M2-branes probing a 8D cone may thus

be expected due to conformality.

We find that this turns out to be true and the dual geometry is now AdS4 × M̃7

parameterized by three natural numbers (t1, t2, t3) = (qNF , pNF , kpq) without any com-

mon factor. In fact, many properties of M̃7(t1, t2, t3) (modulo common factor) known

as Eschenburg space [11] have been explored by mathematicians [12–14]. For example,

Cone(M̃7) is Ricci-flat with special Sp(2) holonomy. Namely, it is hyperKähler and the

base M̃7 must be tri-Sasakian (which preserves a fraction 3/16 of 32 SUSY). Moreover,

the cone is available through applying a hyperKähler quotient to a 3D (flat) quaternionic

space, say, H3///U(1)Q ≡ µ
−1
Q (0)/U(1)Q

2 and (t1, t2, t3) stands for the underlying U(1)Q
charge assignment respectively for three quaternions.3

In order to understand relations better between the three, say, flavored N=4 CSM,

AdS4×M̃7 M-theory dual and IIA gravity dual of N=4 CSM with probe flavor branes em-

bedded, we adopt the viewpoint similar to [15, 16]. That is, we compute the entropy of the

three. On the field theory side, we take large N zero-coupling limit and compactify R1,2 on

S1×S2. Its partition function is finally expressed in terms of an unitary matrix model which

is exactly solvable. A similar formulation using a matrix model allows us to evaluate N=3

superconformal index to which we are able to compare Kaluza-Klein (KK) analysis on M̃7.

On the geometry side, we are led to compute the volume of 7-cycle of Eschenburg

space by taking advantage of a formula given in [17]. Also, the on-shell action of IIA probe

1θ (twisted angle) and g2
YMk/4π (adjoint mass) are related to each other by (L: segment length on x6)

tan θ

L
= g2

YMk,
1

g2
YM

=
L

gs

.

Taking IR limit implies naturally a strongly coupled M-theory picture.
2Certainly, one can solve D- and F-term conditions to see that M2-brane moduli space is SymN (M)

with M ∼ H3/// Ker(β) and

β : U(1)3 → U(1)2, β =

 

p q 0

0 kq NF

!

. (1.1)

The equivalence between two descriptions seems straightforward because three moment maps µQ =
P

3

i=1
tiµi, pµ1 + qµ2 and kqµ2 +NF µ3 are linearly independent.

3Note that the amount of its isometry is essentially SU(2)R ×U(1)2 but U(1)2 gets enhanced to SU(2)×

U(1) (SU(3)) if two (all) of three t’s coincide.
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D6-branes is taken care of. As pointed out in [8], the correct embedding of D6-branes can

be found by performing a further hyperKähler quotient to Cone(M7). One obtains a 4D

Taub-NUT space thereof over which flavor probes should wrap after doing KK reduction

to IIA theory. In addition, we consider 5-cycles among M̃7 because M5-branes wrapped

over them correspond to baryonic operators in the field theory.

This note is organized as follows. We begin with discussing how to obtain a 3D N=3

SCFT from an elliptic N=4 one. Then in section 3 and section 4, we study the entropy of

our underlying N=3 SCFT by means of both field theory and gravity approaches. An N=3

superconformal index is computed in section 5 and comments about baryonic operators are

in section 6. Finally, a conclusion is drawn. Appendices about Taub-NUT space in M-

theory and mesonic operators are attached.

2 Adding flavors to 3D N = 4 SCFT

In section 2.1, we shortly review some aspects about N=4 Chern-Simons-matter theory [3,

18, 19]. In section 2.2, by adding massless flavors to it, a new N=3 SCFT is constructed.

We observe that this N=3 Lagrangian requires naturally a 8D hyperKähler internal space.

2.1 N = 4 SCFT

In order to obtain a desired N=4 SCFT at IR fixed point, one begins with an ultra-violet

(UV) Lagrangian LUV containing N=4 (V I ,ΦI) vector-, (AI , BI) hyper-, and (AJ , BJ)

twisted hyper-multiplets where I labels the gauge factor. LUV can be read off from the

corresponding IIB brane configuration (or quiver diagram) considered in section 1.4 Due

to CS terms induced, vector multiplets acquire mass ∼ kIg
2
YM/4π and at low-energy limit

(gYM → ∞) kinetic terms of them proportional to 1/g2
YM all decouple except for CS terms

which do not depend on gYM. The remaining non-dynamical adjoint ΦI in F-terms or real

scalar σI ⊂ V I in D-terms will be integrated out later. As a result, one arrives at a 3D

N=4 CSM theory with LIR
bos = LCS + Lhyper + Lpot where (bosonic part only)

Lhyper = Tr
∑

I

∫

d3xd4θ
(

A
I
e2V

I

AIe−2V I+1

+BIe−2V I

B
I
e2V

I+1
)

,

Lpot = Tr
∑

I

1

kI

∫

d3xd2θ
(

BIAI −AI−1BI−1
)2

+ c.c..

Unlike N=3 Chern-Simons-Yang-Mills (CSYM) theory obtained by adding CS terms to

N=4 YM one [20, 21], that YM terms decouple here, on the contrary, doubles the amount

of SUSY. The SO(4)R R-symmetry arises from SU(2)t × SU(2)unt rotating (AI , BI) and

(AJ , BJ) which are massless open string modes across (1, k)5- and NS5-branes, respec-

tively.5 With the baryonic U(1)b and diagonal U(1)d, these as a whole agree precisely with

the isometry
(

SU(2) × U(1)
)2

of its moduli space
(

C2/Zp × C2/Zq
)

/Zk [3]. The global

symmetry of N=4 CSM theory is summarized in table 1.

4In fact, there are some thoughts in dealing with p 6= q as shown in [19] for zero CS levels, but we will

ignore these subtleties.
5Note that AI ⊃

`

hI
α, ψ

I
α̇

´

, BI ⊃
“

h̃I
α, ψ̃

I
α̇

”

and AJ ⊃
`

hJ
α̇, ψ

J
α

´

, BJ ⊃
“

h̃J
α̇, ψ̃

J
α

”

where α (α̇) denotes the

spinor index of SU(2).
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U(N)I−1 U(N)I SU(2)R SU(2)R U(1)b U(1)d
hIα N N 2 1 1 1

hIα̇ N N 1 2 -1 1

Table 1. The global symmetry of N = 4 CSM.

In summary, in IR limit the action consists of only CS terms, kinetic terms of hyper-

multiplets and a suitable superpotential. A comment is as follows. The structure of

Lagrangian is quiet simple and one can think that CS terms impose a special kind of

gauging of (n− 2) out of n U(1) factors,6 except for an overall diagonal U(1) and the dual

photon Aµ =
∑

I kIA
I
µ. Note that the remnant of Aµ is some discrete gauge symmetry.

Due to the (n− 2) gauging, a direct observation is that the maximal global symmetry

SO(8) of moduli space is broken to G × U(1)2, where U(1)2 correspond to ungauged ones.

To determine G relies on knowing the complete moduli space. In N=6 ABJM case, the

diagonal U(1) gets included in the SU(4)R R-symmetry. In ellptic N=4 models above,

G = SO(4)R does not get mixed with two U(1)’s.

2.2 Adding flavors

Next, let us add massless flavors to N = 4 SCFT, i.e. to I-th gauge group N I
F fundamental

hypermultiplets (QI , Q̃I) of (N,N) with
∑

I N
I
F = NF . This results in an additional

D-term

Lflavor = Tr
∑

α,I

∫

d3xd4θ

(

Q
I
αe

2V I

QIα + Q̃Iαe
−2V I

Q̃
I

α

)

, α = 1, · · · , N I
F

and

Lpot → L′
pot = Tr

∑

α,I

1

kI

∫

d3xd2θ
(

BIAI −AI−1BI−1 +QI−1
α Q̃I−1

α

)2

+ c.c . . .

The R-symmetry is now broken to SO(3)R which is the diagonal SU(2)d ⊂ SU(2)R ×
SU(2)R ≃ SO(4)R, while U(1)b × U(1)d stays unchanged. We find this is consistent with

the amount of isometry of Eschenburg space (with three different t’s) as advertised in

footnote 2.

3 Entropy from field theory

Let us do a very simple counting of the degrees of freedom in N=3 SCFT. This is carried

out by computing the entropy of a dilute gas of massless states via statistical mechanics.

The system is put in a box of size V2 = L2 and momenta of massless states are quantized

as ~p = 2π~n/L (~n ∈ Z2).

S = −∂F
∂T

, F = −T logZ = T
V2

4π2

∑

i=1,2

∫

d2p si log
(

1 − sie
−βE

)

6Assume N=1 and n: # of 5-branes.
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where si = ± and E =
√

p2
1 + p2

2. Therefore,

2π

∫

dE log

(

tanh

(

1

2
βE
))

E = −2π

β2

7

4
ζ(3),

S =
21

2π
N2V2T

2ζ(3)

(

p+ q +
NF

N

)

+ O(λ).

For p = q = 1 and NF = 0, ABJM result in [2] is reproduced. The power of N here,

namely, N2 deviates from N
3

2 derived from the gravity result. This problem remains

unsolved because we are just using the gauge theory on M2-branes.

3.1 Matrix model free energy

Let us try another method to compute the entropy (or free energy) of SCFTs in large N

limit with ’t Hooft coupling λ = N/k ≪ 1. We assume for simplicity NS5- and (1, k)5-

branes are placed pairwise on the circle x6 such that p = q in Type IIB setup. One needs

to compute the unitary matrix integral (x = e−β) [25, 26, 28]:

Z =

∫ 2q
∏

I=1

DUI exp

q
∑

i=1

∞
∑

n=1

1

n

(

zunt(xn)
(

Tr(Un2i)Tr(U−n
2i+1) + (n↔ −n)

)

+zt(xn)
(

Tr(Un2i−1)Tr(U−n
2i ) + (n↔ −n)

)

+zf2i(x
n)
(

Tr(Un2i)+Tr(U−n
2i )

)

+zf2i−1(x
n)
(

Tr(Un2i−1)

+ Tr(U−n
2i−1)

)

)

. (3.1)

Note that t, unt and f stand for twisted, untwisted and flavor, respectively. The matrix

model arises from compactifying CSM theory on S1 × S2 (t ∼ t + β), taking suitable

temporal gauge and integrating out matters. Here, Polyakov loop UI = eiβA
I
0 satisfies

U2q+1 = U1 and U−1 = U †.

By writing the measure as DU =
∏∞
n=1 dρn exp

(

−N2
∑

n

ρnρ−n
n

)

with ρn =
1

N
TrUn

(which facilitates large N limit), Z becomes

Z =

∫

∏

i,n

dρi,ndχi,n exp
∑

i,n

−N
2

n

(

ρi,nρi,−n + χi,nχi,−n

− 1

N
zf2i,n(ρi,n + ρi,−n) −

1

N
zf2i−1,n(χi,n + χi,−n)

−zunt
n

(

χi,nρi+1,−n+(n↔−n)
)

−ztn
(

ρi,nχi,−n+(n↔−n)
)

)

.

Notice that ρ (χ) comes from the odd (even) subscript of UI . Alternatively, in large N

limit, one can introduce an eigenvalue density function for each UI like

σI(θ) =
1

2π
+

∞
∑

m=1

ρI,m
π

cos(mθ),

∫ 2π

0

dθσI(θ) = 1

to solve the matrix model. Because U appears only in characters of U(N), one can just

express in the diagonal form U = diag(eiθ1 , · · · , eiθN ) and get rid of irrelevant angular

– 5 –
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parts. Also, DU is the invariant Haar measure normalized as
∫

DU TrR′ U ·TrR U
† = δR′R.

It is easily confirmed that either way leads to the same expression of Z.

Further taking high temperature limit β ≪ 1 to facilitate the comparison with gravity

results, we find that there is a saddle point ρi,n = χi,n = 1. Because of

ztn = zunt
n = zn = 2

(

zB(xn) + (−)n+1zF (xn)
)

, zfi,n = N i
F zn,

zB(x) =
x

1

2 (1 + x)

(1 − x)2
, zF (x) =

2x

(1 − x)2
,

by using asymptotics of z’s

zB(xn) → 2

(nβ)2
+ O

(

1

nβ

)

, zF (xn) → 2

(nβ)2
+ O

(

1

nβ

)

and ζ-function,

Z ∼ exp

∞
∑

n=1

2N2

n

(

NF

N
+ 2q

)

zn

gives rise to

F = −2T 3ζ(3)
7

4
N , S =

21

2
T 2ζ(3)N , N = 4(NNF + 2qN2).

We find agreement with the previous result up to some irrelevant constant V2π/4π
2.

4 Entropy from gravity dual

Now let us proceed to examine issues about the entropy (counting degree of freedom) of

the obtained N=3 SCFT using both the 11D M-theory dual and known IIA dual geometry

with probe flavor branes embedded. The entropy obtained by making use of the free field

theory approximation will therefore be compared with these gravity calculations.

To fulfill this purpose, we shall demonstrate more precisely the 8D transverse space to

M2-branes is a 8D hyperKähler manifold, Eschenburg space, whose isometry, holonomy,

and volume have been known (see also Introduction).

4.1 Eschenburg space as gravity dual

According to the remarkable work of Gauntlett, Gibbons, Papadopoulos and Townsend [22],

one is able to have a dictionary translating certain IIB 5-brane configuration into a 11D

M-theory geometry R1,2 × M8. This works also in our case where M8 is now specified as

Eschenburg space. As noted before, its hyperKähler structure makes the symmetry match

with the newly obtained N=3 SCFT quite successful.

For ϕi ∈ (0, 4π],

ds28D =
1

2
Uijdxi · dxj +

1

2
U ij(dϕi +Ai)(dϕj +Aj),

Ai = dxj · ωji = dxaj ω
a
ji, ∂xa

j
ωbki − ∂xb

k
ωaji = ǫabc∂xc

j
Uki (4.1)

– 6 –
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where i, j, k = 1, 2 and a, b, c = 1, 2, 3 (Cartesian label). Note that Uij is a 2 by 2 symmet-

ric matrix:

Uij =
1

2









p

|x1|
+

q

|x1 + kx2|
kq

|x1 + kx2|
kq

|x1 + kx2|
k2q

|x1 + kx2|









(4.2)

in the case of p NS5- and q (1, k)5-branes on Type IIB side. Here, x1 = (345) and

x2 = (789). The normalization of U is chosen such that it gives (4.11) after M2-brane

backreaction.

Let us perform the following GL(2) transformation

(x′
1,x

′
2) = (x1,x2)G

t, (ϕ′
1, ϕ

′
2) = (ϕ1, ϕ2)G

−1,

G =

(

p 0

q kq

)

, U → U ′ =
1

2







1

|x′
1|

0

0
1

|x′
2|






.

The effect of adding NF flavors is to include ∆U = 1
2





0 0

0
NF

|x2|



 to U and thus

∆U ′ =
1

2







qNF

kpL/

−NF

kL/
−NF

kL/

pNF

kqL/






, L/ = |px′

2 − qx′
1|.

We see that due to non-zero NF , (x′
1,x

′
2) should be rotated simultaneously by a com-

mon element of SO(3)R in order to preserve L/ . Moreover, U(1)b × U(1)d corresponds to

two U(1)’s of (ϕ′
1, ϕ

′
2) which can be promoted to a local symmetry and offset by gauge

transformations of (A′
1, A

′
2). These together again agree with the above argument.

In order to make the structure of Eschenburg space, through x
′
1 → −x

′
1, ϕ

′
1 → −ϕ′

1

and rewriting ∆U ′ as

∆U ′ =
1

2









t21
t3|t1x′

1 + t2x
′
2|

t1t2
t3|t1x′

1 + t2x
′
2|

t1t2
t3|t1x′

1 + t2x′
2|

t22
t3|t1x′

1 + t2x′
2|









,

we then find that ds28D in (4.1) leads to Eschenburg space labeled by three coprime natural

numbers (t1, t2, t3) = (qNF , pNF , kpq).

When t1 6= t2 6= t3, it has the least isometry SU(2) × U(1)2 and preserves a fraction

3/16 of 32 SUSY (defining feature of a cone over 7D tri-Sasakian manifolds).7 According

to [17], one has the following relation between 5- and 7-cycles inside Eschenburg space:

vol(S5)

vol(Σ5)
=

vol(S7)

vol(M̃7)
=

(q + p)(NF + kq)(NF + kp)
(

NF + k(q + p)
) . (4.3)

7An enhancement to a fraction 3/8 happens while one zooms into the near-horizon region of M2-branes,

i.e. R1,2× Cone(B7) → AdS4 × B7.
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4.2 Entropy from M-theory dual

Having said that the transverse geometry is a 8D hyperKähler cone, after the backreaction

of M2-branes we are left with AdS4 × M̃7 under the normalization

6R6vol(M̃7) = (2πℓp)
6N, R6

S7 = 25π2Nl6p. (4.4)

Note that R = 2RAdS is the radius of M̃7. This background will be taken as the cornerstone

of studying the strongly coupled behavior of our N=3 CSM theory. To count degrees of

freedom via the above M-theory dual, we replace AdS4 with AdS-Schwarzschild black hole

and evaluate its Bekenstein-Hawking entropy.

AdS-Schwarzschild black hole metric is given by

ds2 =

(

4r2

R2
+ 1 − M

r

)

dτ2 +
dr2

(

4r2

R2
+ 1 − M

r

) + r2dΩ2
2. (4.5)

This metric can serve as a dual description of the finite-temperature CSM theory on S1 ×
S2. (4.5) is smooth if the period of τ satisfies

β =
πR2r0

3r20 + R2

4

(4.6)

where r0 is the horizon radius. Solving (4.6) in terms of β, we obtain

r0 =
πR2

6β
+

√

(

πR2

6β

)2

− R2

12
. (4.7)

From (4.7), it is found that AdS black holes exist when β < πR/
√

3 and Hawking-Page

phase transition [29] occurs at βc = πR/2 above the temperature bound.

We can use Bekenstein-Hawking area law to yield the entropy per 1
4
vol(S2)R2:

S ≡ 2
3

2π2N
3

2

27β2

(

1 +

√

1 − 3β2

π2R2

)2√

vol(S7)

vol(M̃7)

→ 2
7

2π2N
3

2

27β2

√

vol(S7)

vol(M̃7)
(at high temperature). (4.8)

Note that the unit volume of 7-cycle of Eschenburg space is related to that of S7 via (4.3).

See appendix A for another point of view on the derivation of S from GKP-W relation.

By assuming NF ≪ k (λ≪ N/NF ) and expanding (4.8) in powers of 1/k, (4.8) looks like

S =
2

7

2π2N
3

2

27β2

[

√

kpq +
NF

(

p2 + q2 + pq
)

2
√
kpq(p+ q)

+

+
N2
F

(kpq)
3

2

(

−1

2

(

p2 + q2
)

+
3
(

p2 + q2 + pq
)2

8 (p+ q)2

)

+ O
(

N3
Fk

− 5

2

)

]

. (4.9)
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It is convenient to rewrite (4.9) in terms of ’t Hooft coupling as

S =
2

7

2π2

27β2

[

N2

√

pq

λ
+

√
λNNF

(

p2 + q2 + pq
)

2
√
pq(p+ q)

+
λ

3

2N2
F

(pq)
3

2

(

−1

2

(

p2 + q2
)

+
3
(

p2 + q2 + pq
)2

8 (p+ q)2

)]

+ . . . . (4.10)

Setting p = q = 1 in (4.10), we recover results of the flavored ABJM theory in [8]. The

1st term on r.h.s. of (4.9) is the famous N
3

2 factor of M2-branes. The 2nd term can be

interpreted as the tree-level effect of adding flavors as will be shown to be captured by IIA

probe D6-branes. The 3rd term proportional to λ
3

2N2
F represents degrees of freedom from

mesonic flavor states. Higher order terms may describe the interaction between flavor and

bi-fundamental fields. We also find the 2nd term in (4.10) ∝
√
λNNF has an additional√

λ≫ 1 factor compared to weak coupling results. This may suggest that in strong coupling

regime degrees of freedom due to flavors gets increasing quite a lot.

4.3 On-shell action of flavor D6-brane

We now turn to Type IIA viewpoint of evaluating the entropy. This involves treating

flavors as probe branes in a given geometry. To discuss their on-shell action, one must first

clarify how they are embedd.

Let us briefly describe the dual geometry of N=4 SCFT [10] constructed via IIB N

circular D3-, p NS5- and q (1, k)5-branes:

ds211D =
R2

4
ds2AdS4

+R2ds27, R = ℓp(2
5Nkpqπ2)1/6,

ds27 = dξ2 +
1

4
cos2 ξ

(

(dχ1 + cos θ1dφ1)
2 + dθ2

1 + sin2 θ1dφ
2
1

)

+
1

4
sin2 ξ

(

(dχ2 + cos θ2dφ2)
2 + dθ2

2 + sin2 θ2dφ
2
2

)

,

(χ1, χ2) ∼
(

χ1 +
4π

kp
, χ2 +

4π

kq

)

∼
(

χ1 +
4π

p
, χ2

)

,

0 < ξ ≤ π

2
, 0 < θi ≤ π, 0 < φi ≤ 2π. (4.11)

Its isometry, two copies of SU(2)×U(1), is easily read off because there are two (orbifolded)

S3 fibered over a segment [0, 1]. It is straightforward to show that (4.11) is equivalent

to (4.1) with (4.2) via including the near-horizon warp factor of M2-branes and changing

variables as in [9].

For simplicity, we set p = q and KK reduce to IIA string theory. Recall

ds211D = e−
2

3
Φds2IIA + e

4

3
Φ(dϕ+ · · · )2,

– 9 –
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then,

ds27 = ds26 +
1

k2q2
(dỹ + Ã)2, e2Φ =

R3

k3q3
,

Ã = kq

(

1

2
cos2 ξ(dψ + cos θ1dφ1) +

1

2
sin2 ξ cos θ2dφ2

)

,

ds26 = dξ2 +
1

4
cos2 ξ sin2 ξ

(

dψ + cos θ1dφ1 − cos θ2dφ2

)2

+
1

4
cos2 ξ(dθ2

1 + sin2 θ1dφ
2
1) +

1

4
sin2 ξ(dθ2

2 + sin2 θ2dφ
2
2),

ds2IIA = L2(ds2AdS44
+ 4ds26), L2 =

R3

4kq
,

0 < y =
1

kq
ỹ ≤ 2π

kq
, 0 < ψ ≤ 4π

q
, χ1 = ψ + 2y, χ2 = 2y (4.12)

with fluxes

F2 = kq

(

cos ξ sin ξdξ ∧ (dψ + cos θ1dφ1 − cos θ2dφ2)

−1

2
cos2 ξ sin θ1dφ1 ∧ dθ1 −

1

2
sin2 ξ sin θ2dφ2 ∧ dθ2

)

= − kq

2L2
ω2,

F4 = −3

8
R3ǫAdS4

, ǫAdS4
= r2dt ∧ dx1 ∧ dx2 ∧ dr. (4.13)

It is obvious that N=6 ABJM case differs from ours only by a factor q. As will be explained

more in appendix A, by imposing x2 = (789) = 0 (locus of IIB flavor D5-branes) on (4.11),

there then appears AdS4 × S3/Z2q:

ψ′ = ψ/2, θ1 = θ2(= θ), φ1 = −φ2(= φ), ξ =
π

4
,

ds2S3/Z2q
=

1

4

(

dψ′ + cos θdφ
)2

+
1

4

(

dθ2 + sin2 θdφ2
)

. (4.14)

Let us go to evaluate the on-shell action of probe D6-branes. The induced metric at

finite temperature is

ds2D6 = L2









dr2

r2
(

1 −
(r0
r

)3
) − r2

(

1 −
(r0
r

)3
)

dt2 + r2d~x2 + 4ds2S3/Z2p









, (4.15)

where Hawking temperature is given by T = 3r0/4π. The on-shell action of NF D6-branes

per volume V2 of ~x = (x1, x2) is

ID6 = −23NF

(2π)6
e−ΦL7vol(S3/Z2p) ·

∫

dt

∫ ∞

r0

dr r2 → 2
7

2

81

√
λπ2NFNT

2, (4.16)

where we have subtracted the divergent part at infinity. Note that ID6 does not depend

on p (or q). From (4.16) the free energy and entropy per V2 are

FD6 = −TID6 = −2
7

2

81

√
λπ2NFNT

3, SD6 =
2

7

2

27

√
λπ2NFNT

2. (4.17)
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Interestingly, we find that SD6 is again accompanied by a
√
λ factor compared to zero-

coupling approximation. In addition, SD6 is larger than the 2nd term in (4.9) by a factor

4/3 if p = q! But we should be cautious because λ has different values in the two cases.

In M-theory where M-circle (∼ R/ℓpkq ≫ 1) is decompactified, λ ≫ k4q4. Here, in IIA

theory gs ≪ 1 means that 1 ≪ λ ≪ k4q4. It still seems interesting to pursue this 4/3

problem against the famous one in [15].

5 Superconformal index

Superconformal indices of 3D SCFTs are considered in [27, 30–33]. Let us compute that of

our N=3 SCFT containing flavors. Because the internal 7-manifold M̃7 is not homogeneous

in general, to study KK spectra on M̃7 is quite difficult. As prescribed in [27],

I = Tr(−)Fxǫ+jyh2

1 · · · yhM

M−1

receives contributions from short multiplets. M = [N/2] gets related to its superconformal

group OSp(N|4). Also, ǫ, j and hi are eigenvalues of Cartan generators of bosonic subgroup

SO(2) × SO(3) × SO(N ) of OSp(N|4). For N=3, I gets simplified to

I = Tr(−)Fxǫ+j. (5.1)

Using an unitary matrix model prescribed in [26, 32], we can instead compute (5.1) by

I =

∫ 2q
∏

I=1

DUI exp

(

∑

R

∞
∑

n=1

1

n
FR(xn)χR(UnI )

)

=

∫ 2q
∏

I=1

DUI exp

q
∑

i=1

∞
∑

n=1

1

n

(

F tn
(

Tr(Un2i)Tr(U−n
2i+1) + (n ↔ −n)

)

+F unt
n

(

Tr(Un2i−1)Tr(U−n
2i ) + (n↔ −n)

)

+N2i
F F

f
n

(

Tr(Un2i)+Tr(U−n
2i )

)

+N2i−1
F F fn

(

Tr(Un2i−1)+Tr(U−n
2i−1)

)

)

where all conventions about unitary matrices follow (3.1). Again, we assumed that NS5-

and (1, k)5-branes are placed pairwise on the circle such that p = q. By using same

techniques as in (3.1),

I =

∫

∏

i,n

dρi,ndχi,n exp
∑

i,n

−N
2

n

(

|ρi,n|2 + |χi,n|2

− 1

N
N2i
F F

f
n (ρi,n + ρi,−n) −

1

N
N2i−1
F F fn (χi,n + χi,−n)

−F unt
n

(

χi,nρi+1,−n + (n↔ −n)
)

− F tn
(

ρi,nχi,−n + (n↔ −n)
)

)

with

F unt
n = F tn = F fn = Fn = F (xn), F (x) =

√
x

1 + x
.

– 11 –
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Further setting N i
F = m for simplicity and rewriting I as (Mn: 4q × 4q matrix)

I =

∫

∏

n

dcn exp
∑

n

−N
2

2n
(ctnMncn + ptncn + ctnpn),

ctn = (ρ1,n, χ1,n, ρ1,−n, χ1,−n, · · · ), pn = −2m

N
F fn 11×q,

one soon performs this Gaussian integral to yield

I =

∞
∏

n=1

(1 + xn)2q

(1 − xnq)2
· exp

∑

n

Kn, Kn =
N2

2n
ptnM

−1
n pn =

2m2

n
F 2
n

∑

a,b

(

M−1
n

)

ab
(5.2)

with

Mn =









. . . QT
4×4

S8×8

Q4×4
. . .









, S8×8 =

(

R4×4 Q4×4

QT
4×4 R4×4

)

. (5.3)

Here,
. . . denotes S and Q in the corner of Mn is the contribution from the periodic

condition ρq+1,n = ρ1,n. Q has only non-zero elements Q41 = Q23 = −Fn, while

R =

(

0 P
P 0

)

, P =

(

1 −Fn
−Fn 1

)

.

To evaluate how the flavor sector contributes to I lies in expanding the exponential w.r.t.

m. We leave the comparison with gravity results in future works.

6 Baryonic operator

Let us examine the correspondence concerning baryonic operators. If we assume N ≫ NF ,

baryons like ǫi1···iNQI · · ·QI must be ruled out. Then, the possibility lies in

BI = ǫj1···jN ǫ
i1···iNAI · · ·AI , BJ = ǫj1···jN ǫ

i1···iNAJ · · ·AJ (6.1)

where SU(2)R, color and flavor indices are suppressed, while I (J) stands for twisted

(untwisted) hypermultiplets. Their conformal dimensions can be determined from the

superpotential L′
pot to be ∆(B) = N/2. On the gravity side, ∆ can be confirmed via

M5-branes wrapping 5-cycles Σ5 inside Eschenburg space. Upon using (4.3) and (4.4),

∆ = RAdS ·mM5 =
1

2
τM5R

6vol(Σ5) =
πN

6

vol(Σ5)

vol(M̃7)
=
N

2

for large M5-brane mass. We see that ∆ is independent of (t1, t2, t3) as pointed out in [17].

When it comes to degeneracy, both di-baryons above having N + 1 degeneracy form a

spin N/2 rep. of SU(2)R. From

vol(M̃7)

vol(Σ5)
=
vol(S7)

vol(S5)
=
π

3
∼ 1

12
vol(S2),

– 12 –
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we can think that topologically what is transverse to an M5-brane inside M̃7 is roughly a

2-sphere such that the argument similar to [34] is still applicable. That is, the degeneracy of

di-baryons is accounted for by N units of 7-form flux penetrating S2. Collective coordinates

of an M5-brane thus behave quantum mechanically as if there wereN+1 degenerated states

in the lowest Landau level under N units of magnetic flux through S2.

Finally, we comment on how many independent di-baryons are there. According

to [10] without flavors, the decomposability of
∏

I B
I and

∏

J B
J (dressed by appropri-

ate monopole operators) into mesons gives rise to totally p+ q− 2 independent di-baryons.

A detailed survey on the homology H5(M7,Z) = Zp+q−2 reveals the same thing.8 These

can be put another way, i.e. gauge-variant di-baryons are charged under p + q − 2 U(1)

gauge fields except for the two (diagonal one and dual photon) which are not involved in

performing a hyperKähler quotient as said in section 1. Naively, this means that the RR

6-form potential should therefore be expanded like C6 ∼∑p+q−2
I=1 ωI5 ∧AI . In other words,

H5(M7,Z) = Zp+q−2 (ω5: volume form of 5-cycle).

In our case, given Betti numbers

b2(M̃7) = b5(M̃7) = 1,

it seems there is only one single di-baryon though. In view of (6.1), it seems there should

be more independent di-baryons according to arguments given above. We wish to resolve

the discrepancy in a future work.

7 Conclusion

In this note we provide a gravity dual for the flavored N=4 Chern-Simons-matter theory

which is a kind of N=3 SCFT. From the following three viewpoints:

1. SUSY and global symmetry match

2. hyperKähler quotient construction of the moduli space

3. GGPT method of identifying the M-theory transverse geometry from the given Type

IIB 5-brane configuration

we get confident in regarding our proposed Eschenburg space as an adequate candidate.

To study further the correspondence between both, we go to count degrees of freedom.

On the field theory side, this is done by taking large N zero-coupling approximation

such that an unitary matrix model previously known fulfills our purpose. On the gravity

side, two approaches are tried, namely, we calculate the entropy from both the 11D

AdS-Schwarzschild-Eschenburg black hole and an on-shell action of probe D6-branes in

Type IIA geometry which is dual to N=4 CSM. It is seen that field theory results are

corrected by multiplying a factor
√
λ to NNF terms. This suggests that in strong coupling

regime degrees of freedom due to adding flavors increase extremely. We also study

gravity duals of mesonic and baryonic operators and find agreements on their conformal

dimensions, and so on.

8See [35] for detailed considerations about homology in AdS4/CFT3.
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Moreover, an N=3 superconformal index is computed, though a comparison with the

one from gravity is left in a future work due to essential difficulties in deriving Kaluza-Klein

spectra on inhomogeneous M̃7. Nevertheless, for (t1, t2, t3) = (1, 1, 1), i.e. M̃7 = N(1, 1),

its KK spectra are known in some literature [36–38] and hence the comparison seems

worthy of trying. Since Eschenburg space metric has not yet been fully exploited, we wish

to report progress towards its application soon.
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A Degrees of freedom in 3D N = 3 SCFT

We can roughly evaluate the degrees of freedom of the strongly coupled 3D SCFT via

GKP-W relation [23, 24].9

We just compute the correlation function of two energy-momentum tensors

〈T (x)T (y)〉 =
δ2Sgravity

δhδh
∼ c

|x− y|2∆ , ∆ = 3

where h is the metric perturbation around AdS4 boundary, while c may contain the infor-

mation about degrees of freedom in the 3D SCFT. Because c is dimensionless and (GD:

Newton constant)

Sgravity =
1

G4

∫

d4x
√−g(R− Λ),

the only choice for c is

c ∼ R2
AdS

G4
, G4 =

G11

R7vol(M̃7)
,

R = 2RAdS, G11 = (2π)8ℓ9p, → c ∼ N
3

2

√

vol(M̃7)

where R is the radius of M̃7 and we have used (4.4). As is shown in section 4, c is exactly

what is computed via Bekenstein-Hawking area law via its M-theory dual.

B Taub-NUT space

In this appendix, we show that probe D6-branes wrap 012 plus 4D Taub-NUT space inside

the 7D cone in IIA theory.

9This part is inspired by the lecture note of Yosuke Imamura.
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Recall that flavor D5-branes occupying (012345) are localized at x2 = (789) = 0.

Regarding this constraint as a moment map (at zero level set), we can further perform a

hyperKähler quotient via rearranging ds28D into
(

ϕ2: M-circle, U = 1
2
Ũ
)

ds28D =
1

4

(

Ũijdxi · dxj +
4

Ũ11

(dϕ1 +A1)
2

)

+
Ũ11

det Ũ

(

dϕ2 −
Ũ12

Ũ11

dϕ1

)2

. (B.1)

A rescale is done to get a period 2π M-circle. Imposing x2 = 0 and throwing away the

last term, we have (p = q, x1 = ρ, ρ = |ρ|, ϕ1 = ψ ∈ (0, 4π])

ds24 =
1

2

(

q

ρ
dρ2 +

ρ

q
(dψ +A1)

2

)

,

A1 → 2q
−ρ1dρ2 + ρ2dρ1

ρ(ρ+ ρ3)
= −2qω · dρ, ∇× ω = −∇1

ρ
, (B.2)

which represents a multi-centered Taub-NUT whose 2q NUTs coincide. Owing to the cone

structure, making M2-branes backreact and taking near-horizon limit, we have constant

dilaton field

e
4

3
Φ = H

1

3 (r2 = |x′
1| + |x′

2|)·
(

Ũ11

det Ũ

)

=const.,

H = 1 +
ℓ6p2

5N ′π2

r6
∼
(

R2

r2

)3

r → 0,

which promises an AdS factor. Therefore, one can finally arrive at flavor D6-branes with

worldvolume AdS4 × S3/Z2q:

ds2D6 = L2
(

ds2AdS4
+ 4ds2S3/Z2q

)

. (B.3)

On the other hand, if the level set is non-zero x2 = ξ 6= 0, i.e. adding massive fundamen-

tal flavors, it is readily seen that all NUTs will not coincide and TN4 is partially resolved.

C Meson spectrum

Here, we consider mason spectra from Type IIA geometry in (4.12). This involves a D6-

brane embedding with worldvolume action described by (ℓs = 1)

SD6 = −TD6

∫

d7x
√

− det(gab +Bab + 2πFab) − TD6

∫

e2πF+B ∧
∑

p

Cp. (C.1)

We take the static gauge such that its worldvolume is parameterized by (t, x, y, r, θ, φ, ψ′)

with θ = θ1 = θ2 and φ = φ1 = −φ2. The scalar perturbation on a stack of D6-branes

concerning meson spectra is δξ = η = ρ(r)eip·xYℓ(Ω). Its angular part can be expanded by

spherical harmonics on S3:

∇2Yℓ(Ω) = −ℓ(ℓ+ 2)Yℓ(Ω). (C.2)
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Let us assume in Type IIB picture there are totally F flavor D5-branes distributed over

2q intervals of x6 as
(

F1, · · · , F2q

)

(F =
∑2q

I=1 FI) such that the flavor symmetry gets

broken like U(F ) →∏

I U(FI). Note that via T-dualizing x6 to IIA the above information

is encoded in the following holonomy (Wilson loop)

exp

(

i

∮

Aψ′dψ′

)

=

2q
⊕

I=1

ωI1FI
(C.3)

on F D6-branes with ω = exp(2πi/2q) due to π1(S
3/Z2q) = Z2q in (B.3).

Moreover, spherical harmonics can be labeled by Y IJ
ℓ (Ω), i.e. the open string scalar

mode η can be either of adjoint rep. (I = J) or bi-fundamental rep. (I 6= J) w.r.t. flavor

groups depending on on which two stacks of D6-branes its ends are. Because only modes

surviving the projection Γ = ωI−J exp
4πiJ3

L

2q
(JL ∈ SO(4) ≃ SU(2)L × SU(2)R of S3 and

ωI−J stands for the acquired holonomy) remain, therefore

2mL + I − J ∈ 2qZ. (C.4)

For Yℓ of (mL,mR) = (ℓ/2, ℓ/2), this implies

ℓ = k + 2qZ, k = 0, · · · , 2q − 1. (C.5)

Furthermore, due to [9]

∆ =
d

2
±
√

(

d

2

)2

+m2
η, m2

η =
ℓ(ℓ+ 2) − 8

4
,

one has

∆ = 1 − ℓ

2
= 1 +

k

2
+ qZ. (C.6)

From the superpotential in section 2, all A,B,Q and Q̃ have the same conformal dimension

1/2, thus dual mesonic operators of ∆ are like

Q̃I−1AI
(

AIBI
)xI · · ·AJ

(

AJBJ
)xJQJ+1,

∑

K

xK = qZ. (C.7)

As a remark, it is seen that meson spectra are not effected by gauge group ranks

on different intervals. This can be seen from (C.1) where D6-brane DBI action has zero

pull-back of NSNS 2-form flux ∝ ω2 (Kähler form) arising from fractional M2-branes [39].
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